Tools Reference
Complete reference for all 7 RelayPlane MCP Server tools.
| Tool | Purpose | Cost |
|---|---|---|
| relay_run | Single AI model call | Provider cost |
| relay_workflow_run | Multi-step workflows | Provider cost |
| relay_workflow_validate | DAG validation | Free |
| relay_models_list | List available models | Free |
| relay_skills_list | Discover skills | Free |
| relay_runs_list | Recent runs | Free |
| relay_run_get | Run details + trace | Free |
relay_run
Execute a single AI model call. Useful for testing prompts before building full workflows.
Input Schema
1{2 model: string, // "provider:model" format (e.g., "openai:gpt-4o")3 prompt: string, // The user prompt to send4 systemPrompt?: string, // Optional system prompt5 schema?: object // Optional JSON schema for structured output6}Response
1{2 success: boolean,3 output: string | object,4 model: string,5 usage: {6 promptTokens: number,7 completionTokens: number,8 totalTokens: number,9 estimatedProviderCostUsd: number10 },11 durationMs: number,12 runId: string,13 traceUrl: string,14 error?: { code: string, message: string }15}Example
1relay_run({2 model: "openai:gpt-5.2",3 prompt: "Extract the company name from: john@acme.com",4 schema: {5 type: "object",6 properties: { company: { type: "string" } },7 required: ["company"]8 }9})relay_workflow_run
Execute a multi-step AI workflow. Intermediate results stay in the workflow engine (not your context), providing 90%+ context reduction on complex pipelines.
Input Schema
1{2 name: string, // Workflow name for tracing3 steps: Array<{4 name: string, // Step identifier5 model?: string, // "provider:model" format6 prompt?: string, // Prompt template (supports {{interpolation}})7 systemPrompt?: string,8 depends?: string[], // Dependencies on other steps9 mcp?: string, // MCP tool ("server:tool" format)10 params?: object, // MCP tool parameters11 schema?: object // JSON schema for structured output12 }>,13 input: object // Input data (accessible via {{input.field}})14}Response
1{2 success: boolean,3 steps: Record 4 success: boolean,5 output: any,6 durationMs: number,7 usage?: {8 promptTokens: number,9 completionTokens: number,10 estimatedProviderCostUsd: number11 },12 error?: { code: string, message: string }13 }>,14 finalOutput: any,15 totalUsage: {16 totalTokens: number,17 estimatedProviderCostUsd: number18 },19 totalDurationMs: number,20 runId: string,21 traceUrl: string,22 contextReduction: string // e.g., "94% (saved ~45k tokens)"23}Example
1relay_workflow_run({2 name: "invoice-processor",3 steps: [4 {5 name: "extract",6 model: "openai:gpt-5.2",7 prompt: "Extract invoice data from: {{input.fileContent}}"8 },9 {10 name: "validate",11 model: "anthropic:claude-sonnet-4.5",12 depends: ["extract"],13 prompt: "Verify totals match in: {{steps.extract.output}}"14 },15 {16 name: "summarize",17 model: "openai:gpt-5-nano",18 depends: ["validate"],19 prompt: "Create 2-sentence summary: {{steps.validate.output}}"20 }21 ],22 input: { fileContent: "..." }23})relay_workflow_validate
Validate workflow structure without making any LLM calls. Free to use. Checks DAG structure (no cycles), dependency references, and model ID format.
relay_workflow_run to catch structural errors without spending on provider costs.Input Schema
1{2 steps: Array<{3 name: string,4 model?: string,5 prompt?: string,6 depends?: string[],7 mcp?: string,8 params?: object9 }>10}Response
1{2 valid: boolean,3 errors: Array<{4 step: string,5 field: string,6 message: string7 }>,8 warnings: Array<{9 step: string,10 message: string11 }>,12 structure: {13 totalSteps: number,14 executionOrder: string[],15 parallelGroups: string[][]16 }17}Validates
- ✓DAG structure (no cycles)
- ✓Dependency references exist
- ✓Model IDs are valid format
- ✓Required fields present
Does NOT Validate
- ✗Schema compatibility between steps
- ✗Prompt effectiveness
relay_models_list
List available AI models with capabilities and pricing. Use to check valid model IDs before testing.
Input Schema
1{2 provider?: "openai" | "anthropic" | "google" | "xai" // Optional filter3}Response
1{2 models: Array<{3 id: string, // e.g., "openai:gpt-4o"4 provider: string,5 name: string,6 capabilities: string[], // e.g., ["text", "vision", "function_calling"]7 contextWindow: number,8 inputCostPer1kTokens: number,9 outputCostPer1kTokens: number10 }>11}relay_skills_list
List available pre-built workflow skills. Skills are reusable patterns for common tasks with documented context reduction metrics.
Input Schema
1{2 category?: "extraction" | "content" | "integration" | "all"3}Response
1{2 skills: Array<{3 name: string,4 category: string,5 description: string,6 models: string[],7 contextReduction: string, // e.g., "97%"8 usage: string // Example usage9 }>10}relay_runs_list
List recent workflow runs for debugging and reference.
Input Schema
1{2 limit?: number // Default: 10, max: 503}Response
1{2 runs: Array<{3 runId: string,4 name: string,5 status: "success" | "error",6 createdAt: string,7 durationMs: number,8 totalCost: number9 }>10}relay_run_get
Get full details of a specific run including all step outputs and trace URL.
Input Schema
1{2 runId: string // The run ID to retrieve3}Response
1{2 runId: string,3 name: string,4 status: "success" | "error",5 steps: Record 6 output: any,7 durationMs: number,8 usage?: object9 }>,10 finalOutput: any,11 traceUrl: string,12 createdAt: string,13 totalDurationMs: number14}Next Steps
- Skills — Pre-built workflow patterns with context reduction metrics
- Budget & Limits — Configure safety limits for provider costs